随着大型语言模型(LLM)Agent 的应用日益广泛,这些 Agent 能够执行复杂的任务,如自然语言处理、信息检索和自动化决策。随着技术的发展,出现了多种构建和部署这些 Agent 的方法和框架,例如 LangGraph、AutoGen、OpenAI 的 Assistant API、CrewAI 和 LlamaIndex 等。这些框架和方法各有优势,但也带来了一个挑战:如何实现不同 Agent 之间的有效通信和协作?

1. 多 Agent 的挑战

在多 Agent 中,每个 Agent 可能暴露出不同的 API,这使得标准化通信变得困难。不同的 API 意味着不同的通信协议和数据格式,这限制了 Agent 之间的互操作性,阻碍了它们在复杂任务中的协同工作能力。为了克服这一挑战,需要一个统一的通信标准,使得不同 Agent 能够无缝交互,无论它们是基于何种技术构建的。

2. Agent Protocol 的应运而生

Agent Protocol 应运而生,旨在提供一个框架无关的、标准化的接口,用于 Agent 之间互操作通信 ,为多 Agent 通信迈出了可靠的一步。这个协议由 LangGraph 发起,它的核心目标是:

  1. 统一通信标准:通过定义一套通用的 API,使得不同 Agent 能够以一致的方式进行通信,无论它们背后的技术如何。

  2. 促进互操作性:允许不同框架和 Agent 之间的互操作,使得它们可以在同一生态系统中协同工作,共享信息和资源。

  3. 简化部署和集成:通过标准化接口,开发者可以更容易地将不同的 Agent 集成到他们的应用中,无论是在本地环境还是云端。

  4. 提高可靠性和效率:围绕执行(Runs)、组织多轮执行(Threads)和与长期记忆合作(Store)的概念构建,这些都是可靠部署 Agent 的关键要素。

目前 LangGraph 已经实现了该协议的超集,实现 Agent Protocol 的 Agent 系统,比如 AutoGen 可以和 LangGraph Studio 进行互操作。该协议的地址和 OpenAPI 接口可以访问:https://github.com/langchain-ai/agent-protocol,同时我也在另外一篇中翻译了一份协议文档。

3. Agent Protocol 的意义

代理协议的出现不仅是技术进步的必然结果,也是多代理协作需求的直接响应。它为构建一个更加灵活、高效和互联的代理生态系统提供了基础,使得开发者能够构建更加复杂和强大的应用,同时降低了开发和维护的复杂性。通过代理协议,我们可以期待一个更加开放和协作的人工智能未来。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

更多推荐