
Agent遇上4万个工具?一个token搞定!
今天给家人们分享一篇论文,看内容挺实用的,并且代码开源。随着大型语言模型(LLMs)的发展,它们无法与外部工具直接交互以自主执行任务,这仍然是一个关键的限制。传统方法依赖于将工具描述作为上下文进行输入,这受到上下文长度的限制,并且需要单独的、通常效率不高的检索机制。。这使得LLM能够生成工具调用和参数作为其下一次token预测能力的一部分,无缝结合工具调用和语言生成。我们的框架允许LLM访问和利用
今天给家人们分享一篇论文,看内容挺实用的,并且代码开源。
ToolGen: Unified Tool Retrieval and Calling via Generation
随着大型语言模型(LLMs)的发展,它们无法与外部工具直接交互以自主执行任务,这仍然是一个关键的限制。传统方法依赖于将工具描述作为上下文进行输入,这受到上下文长度的限制,并且需要单独的、通常效率不高的检索机制。我们引入了 ToolGen,这是一种范式转变,通过将每个工具表示为唯一的token,直接将工具知识集成到LLM的参数中。这使得LLM能够生成工具调用和参数作为其下一次token预测能力的一部分,无缝结合工具调用和语言生成。我们的框架允许LLM访问和利用大量的工具,而无需进行额外的检索步骤,从而大大提高了性能和可扩展性。对超过 47,000 个工具进行的实验结果表明,ToolGen 不仅在工具检索和自主任务完成方面取得了优越的结果,而且为能够适应不同领域工具的新时代 AI 代理奠定了基础。ToolGen 通过从根本上将工具检索转变为生成过程,为更通用、高效和自主的 AI 系统铺平了道路。ToolGen 能够实现端到端的工具学习,并与其他先进技术(如思维链和强化学习)集成,从而扩展了LLMs 的实际能力。代码开源:https://github.com/Reason-Wang/ToolGen
现实场景中,工具可能会很多,无法全部放进模型的上下文中。因此在给定一个用户问题之后,一般会存在一个工具召回模块,它的目标是从一个工具集中找到与用户问题相关的工具来解决这个问题。
经典的ToolBench,有16000个工具集,总共有47000个API。从中捞出来与问题相关的工具,还是很困难的一个问题。
这个过程对应了下图的上半部分。图片上左为工具召回模块,一般借助相似度方法获取数量有限的工具。图片上右就是常见的Agent引擎做出相应的Action。
而本文介绍的ToolGen,整个流程分为2大步
- 工具映射到词表id,这样模型做决策的时候,就只需要预测出对应的token id即可
-
微调新添加进去的id,分为3小步
-
输入工具描述,输出对应的工具token id,学习新增id的具体含义
-
输入query,输出对应的工具token id,学会根据用户问题召回对应的工具
-
端到端的Agent训练,引导模型输出完整的plan,action,params
总的来说,ToolGen是将工具检索和执行统一为一个生成任务,简化了检索过程,并且可以与其他LLM功能(如链式推理和强化学习)集成。训练还算容易,最后结果也很亮眼。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)