
Multi-agent collaborative perception相关工作汇总
3-任务输出:可以最大程度降低传输带宽开销,因为只有少数数字需要被广播,但可能会失去有价值的场景内容和不确定性信息,而这些信息对于更好地融合信息可能是非常重要的。1-原始传感器数据:可以最大限度地减少信息损失,但它们需要更多的带宽,此外,接收车辆需要处理所有收到的额外的传感器数据,这可能使它无法满足实时推理的要求。2-中间特征:深层网络中的中间表示可以轻松压缩,同时保留下游任务的重要信息.并且计算
·
Multi-robot collaborative perception
欢迎大家点赞、关注集群式无人机板块(今年会全面完善仿真环境、算法、真实部署等多个部分)~
1. Multi-robot collaborative perception
1.1 conception
- Collaborative perception learns how to share information among multiple robots to perceive the environment better than individually done.
1.2 Motivation
- Modern perception systems of embodied robots are known to be sensitive to occlusions and sensor degradations or failures, and lack the capability of long perceiving range.
1.3 Category
- N robots - 1 targets
- N robots - N targets
- N robots - M targets
1.4 Framework
(1) process sensor data, (2) broadcasting it, (3) incorporation it, (4) generate results.
- Early Fusion: The vehicles will directly transmit the raw point clouds to other collaborators.
- Intermediate Fusion: The collaborators will extract intermediate features using a neural feature extractor and broadcast the compressed feature to other collaborators.
- Late Fusion: Each vehicle detects 3D objects utilizing its own sensor observations and delivers the predictions to others. Then the receiver applies Nonmaximum suppression to produce the final outputs.
-
1-原始传感器数据:可以最大限度地减少信息损失,但它们需要更多的带宽,此外,接收车辆需要处理所有收到的额外的传感器数据,这可能使它无法满足实时推理的要求。
2-中间特征:深层网络中的中间表示可以轻松压缩,同时保留下游任务的重要信息.并且计算开销低,因为来自其他智能体的传感器数据已经被预处理。
3-任务输出:可以最大程度降低传输带宽开销,因为只有少数数字需要被广播,但可能会失去有价值的场景内容和不确定性信息,而这些信息对于更好地融合信息可能是非常重要的。
1.5 challenge
- When does robots communicate, with whom, and with what?
- How to imcorporate?
2. Multi-robot collaborative raw data, encoding, decoding
year | Method | Venue | sensor | dataset | eoncoding | decoding | tasks | loss |
---|---|---|---|---|---|---|---|---|
2020 | Who2com | ICRA | LiDAR | |||||
2020 | when2com | CVPR | LiDAR | |||||
2020 | V2VNet | ECCV | LiDAR | |||||
2021 | DiscoNet | NeurIPS | ||||||
3. Multi-robot collaborative communication
year | Method | Venue | sensor | graph construction | compress | who | when | what | error |
---|---|---|---|---|---|---|---|---|---|
2020 | Who2com | ICRA | LiDAR | Handshake-based sparse graph | - | Y | - | Full feature map | - |
2020 | when2com | CVPR | LiDAR | Handshake-based sparse graph | - | Y | Y | Full feature map | - |
2020 | V2VNet | ECCV | LiDAR | Fully connected graph | - | - | - | Full feature map | - |
2021 | DiscoNet | NeurIPS | LiDAR | Fully connected graph | - | - | - | Full feature map | - |
4. Multi-robot collaborative perception fusing
year | Method | Venue | sensor | pose | fusing | delay | asynchrony | view | error |
---|---|---|---|---|---|---|---|---|---|
2020 | Who2com | ICRA | LiDAR | ||||||
2020 | when2com | CVPR | LiDAR | ||||||
2020 | V2VNet | ECCV | LiDAR | ||||||
2021 | DiscoNet | NeurIPS | LiDAR | ||||||
更多推荐
所有评论(0)