Dify 是一个用于构建 AI 应用程序的开源平台。 Dify融合了后端即服务(Backend as Service)和LLMOps理念。它支持多种大型语言模型,如Claude3、OpenAI等,并与多个模型供应商合作,确保开发者能根据需求选择最适合的模型。

Dify通过提供强大的数据集管理功能、可视化的Prompt编排以及应用运营工具,大大降低了AI应用开发的复杂度。

一、Dify

什么是Dify(Define & Modify)?Dify是一个开源的大语言模型(LLM)应用开发平台,旨在简化和加速生成式AI应用的创建和部署。该平台结合了后端即服务(Backend as Service, BaaS)和LLMOps的理念,为开发者提供了一个用户友好的界面和一系列强大的工具,使他们能够快速搭建生产级的AI应用。

1、 低代码/无代码开发:Dify通过可视化的方式允许开发者轻松定义Prompt、上下文和插件等,无需深入底层技术细节。

2、 模块化设计:Dify采用模块化的设计,每个模块都有清晰的功能和接口,开发者可以根据需求选择性地使用这些模块来构建自己的AI应用。

3、 丰富的功能组件:平台提供了包括AI工作流、RAG管道、Agent、模型管理等丰富功能组件,帮助开发者从原型到生产的全过程。

4、 支持多种大语言模型:Dify已支持主流的模型,开发者能够根据自己的需求选择最适合的模型来构建AI应用。

Dify提供四种基于LLM构建的应用程序,可以针对不同的应用场景和需求进行优化和定制。

1、 聊天助手(Chat Assistant):

  • 基于LLM的对话助手,能够与用户进行自然语言交互,理解用户的问题、请求或指令,并给出相应的回答或执行相应的操作。

2、 文本生成(Text Generation):

  • 专注于各种文本生成任务,如撰写故事、新闻报道、文案、诗歌等创意写作,以及文本分类、翻译等任务。

3、 Agent(智能代理):

  • 这种助手不仅具备对话能力,还具备任务分解、推理、工具调用等高级能力。它能够理解复杂的指令,将任务分解为多个子任务,并调用相应的工具或API来完成这些子任务。

4、 工作流程(Workflow):

  • 根据用户定义的流程编排,灵活地组织和控制LLM的工作流程。用户可以自定义一系列的操作步骤和逻辑判断,让LLM按照预定的流程执行任务。

二、Dify + RAG

如何将文档上传到Dify知识库构建RAG?将文档上传到Dify知识库的过程涉及多个步骤,从文件选择、预处理、索引模式选择到检索设置,旨在构建一个高效、智能的知识检索系统。

1、 创建知识库:Dify主导航栏中的“知识”,在此页面可以看到已有的知识库。
  • 创建新知识库:拖放或选择要上传的文件,支持批量上传,但数量受订阅计划限制。

  • 空知识库选项:如果尚未准备文档,可选择创建空知识库。

  • 外部数据源:使用外部数据源(如Notion或网站同步)时,知识库类型将固定,建议为每个数据源创建单独知识库。

2、文本预处理与清理:内容上传到知识库之后,需要进行分块和数据清洗,这个阶段可以理解为内容的预处理和结构化。
  • 自动模式:Dify自动分割和清理内容,简化文档准备流程。

请添加图片描述

  • 自定义模式:对于需要更精细控制的情况,可选择自定义模式进行手动调整。

3、 索引模式:根据应用场景选择合适的索引模式,如高质量模式、经济模式或问答模式。
  • 高质量模式:利用Embedding模型将文本转换为数值向量,支持向量检索、全文检索和混合检索。

  • 经济模式:采用离线向量引擎和关键字索引,虽然准确率有所降低,但省去了额外的 token 消耗和相关成本。

  • 问答模式: 系统会进行文本分词,并通过摘要的方式,为每段生成QA问答对。

4、 检索设置:

(1)在高质量索引模式下,Dify 提供三种检索设置:向量搜索、全文搜索、混合搜索

  • 向量搜索:将查询向量化,计算与知识库中文本向量的距离,识别最接近的文本块。

  • 全文搜索:基于关键字匹配进行搜索。

  • 混合搜索:结合向量搜索和全文搜索的优势。

  • Rerank模型:对检索结果进行语义重排序,优化排序结果。

(2)在经济索引模式下,Dify 提供单一检索设置:倒排索引和TopK

  • 倒排索引:一种为快速检索文档中的关键字而设计的索引结构。

  • TopK和分数阈值:设置检索结果的数量和相似度阈值。

三、Dify + Agent

如何在Dify平台搭建Agent?在Dify平台上,通过选择模型、编写提示、添加工具与知识库、配置推理模式及对话开启器,最后进行调试预览并发布为Webapp,实现Agent的创建与部署。

1、探索与集成应用模板

Dify平台提供了丰富的“探索”(Explore)部分,其中包含多个代理助理的应用模板。用户可以直接将这些模板集成到自己的工作区中,快速开始使用。同时还允许用户创建自定义代理助理,以满足特定的个人或组织需求。

2、 选择推理模型

代理助理的任务完成能力很大程度上取决于所选LLM模型的推理能力。建议使用如GPT-4等更强大的模型系列,以获得更稳定、更精确的任务完成结果。

3、 编写提示与设置流程

在“说明”(Instructions)部分,用户可以详细编写代理助理的任务目标、工作流程、所需资源和限制条件等提示信息。这些信息将帮助代理助理更好地理解并执行任务。

4、 添加工具与知识库
  • 工具集成:在“工具”(Tools)部分,用户可以添加各种内置或自定义工具,以增强代理助理的功能。这些工具可以包括互联网搜索、科学计算、图像创建等,帮助代理助理与现实世界进行更丰富的交互。

  • 知识库:在“上下文”(Context)部分,用户可以整合知识库工具,为代理助理提供外部背景知识和信息检索能力。

5、推理模式设置

Dify支持两种推理模式:Function Calling和ReAct。

  • Function Calling:对于支持该模式的模型(如GPT-3.5、GPT-4),建议使用此模式以获得更好更稳定的性能。

  • ReAct:对于不支持Function Calling的模型系列,Dify提供了ReAct推理框架作为替代方案,以实现类似的功能。

6、 配置对话开启器

用户可以为代理助理设置对话开场白和初始问题,以便在用户首次与代理助理交互时,展示其可以执行的任务类型和可以提出的问题示例。

7、 调试与预览

在将代理助理发布为应用程序之前,用户可以在Dify平台上进行调试和预览,以评估其完成任务的有效性和准确性。

8、应用程序发布

一旦代理助理配置完成并经过调试,用户就可以将其发布为Web应用程序(Webapp),供更多人使用。这将使得代理助理的功能和服务能够跨平台、跨设备地提供给更广泛的用户群体。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

Agent 垂直技术社区,欢迎活跃、内容共建,欢迎商务合作。wx: diudiu5555

更多推荐