
一文看懂:4种革新性AI Agent工作流设计模式全解析
AI Agent是指能够在特定环境中自主执行任务的人工智能系统,不仅接收任务,还自主制定和执行工作计划,并在过程中不断自我评估和调整,类似于人类在创造性任务中的思考和修正过程。AI Agent的四种关键设计模式是实现高效执行复杂任务的基础,共同构成了AI Agent的能力框架。本文将深入解析这四种关键设计模式。反思:LLM检查自己的工作,以提出改进方法。使用工具:LLM使用网络搜索、代码执行或任何
导读:AI Agent是指能够在特定环境中自主执行任务的人工智能系统,不仅接收任务,还自主制定和执行工作计划,并在过程中不断自我评估和调整,类似于人类在创造性任务中的思考和修正过程。AI Agent的四种关键设计模式是实现高效执行复杂任务的基础,共同构成了AI Agent的能力框架。本文将深入解析这四种关键设计模式。
AI Agent的四种关键设计模式如下:
-
反思:LLM检查自己的工作,以提出改进方法。
-
使用工具:LLM使用网络搜索、代码执行或任何其他功能来帮助收集信息、采取行动或处理数据。
-
规划:LLM提出并执行一个多步骤计划来实现目标。
-
多智能体协作:多个 AI 智能体一起工作,分配任务并讨论和辩论想法,提出比单个智能体更好的解决方案。
1. 反思
如图1所示,反思模式允许AI Agent在完成任务后对自身的输出进行再次审视和评估。在这种模式下,AI Agent不仅能执行任务,还能像人类专家一样,对自己的工作进行批判性思考。
图1 AI Agent四种设计模式——反思
案例:
AI Agent可能会生成一段代码,然后根据预设的标准或反馈,自我检查代码的正确性、效率和结构,并提出可能的改进措施。这种自我监督和修正的能力,使得AI Agent在执行任务时能够不断提高准确性和效率。
2. 工具使用
工具使用如图2所示,它赋予AI Agent使用外部工具和资源的能力,以此来扩展其功能和提高生产效率。该模式下,AI Agent可以搜索网页、生成和运行代码、分析数据等,利用各种工具来收集信息、执行操作。
图2 AI Agent四种设计模式——工具使用
案例:
AI Agent可能会使用图像处理工具来分析和处理图像数据,或者调用API来获取和整合外部信息。这样的能力使得AI Agent不再局限于内置的知识库,而是能够与外部系统交互,从而更好地适应多变的任务需求。
3. 规划
规划模式强调AI Agent在面对复杂任务时,能够进行系统性的规划和步骤分解。如图3所示,AI Agent不仅能够理解任务的整体目标,还能够制定出详细的行动计划,并按照计划逐步推进任务流程。该模式下,AI Agent能够展现出类似人类的前瞻性和策略性思维。例如,AI Agent可能会在进行项目管理时,先确定项目的主要里程碑,然后为每个里程碑制定具体的执行步骤和时间表,确保项目能够有序进行。
图3 AI Agent四种设计模式——规划
案例:
AI Agent可以根据给定的目标自动规划出实现路径,比如在开发一个新项目时,它能够规划出研究、设计、编码、测试等一系列步骤,并自动执行这一计划,甚至在遇到问题时重新规划以绕过障碍。
4. 多Agent协作
Agent协作突出了多个AI Agent之间的合作和协调。如图4所示,在这种模式下,每个AI Agent都可以扮演特定的角色,并与其他AI Agent共同协作以完成复杂的任务。这种合作可以模拟真实世界中的团队工作流程,通过代理间的互补和协同作用,提高整体的执行效率和创新能力。
图4 AI Agent四种设计模式——多Agent合作
案例:
在一个开源软件开发项目中,一个AI Agent可能负责编写代码,另一个AI Agent则负责代码审查和测试,通过这样的分工合作来共同推动项目的成功完成。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)