【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。
【控制】多智能体系统总结。4.控制协议。
【控制】多智能体系统总结。5.系统合并。

1. 系统模型

1.1 一阶一维系统

{ p ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = u_i \\ \end{aligned}\right. \tag{} {p˙i=ui()

1.2 一阶二维系统

{ p ˙ i x = u i x p ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = u_i^x \\ \dot{p}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} {p˙ixp˙iy=uix=uiy()

1.3 二阶一维系统

{ p ˙ i = v i v ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = v_i \\ \dot{v}_i & = u_i \\ \end{aligned}\right. \tag{} {p˙iv˙i=vi=ui()

1.4 二阶二维系统

{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = v_i^x \\ \dot{p}_i^y & = v_i^y \\ \dot{v}_i^x & = u_i^x \\ \dot{v}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()


2. 控制目标

控制目标为所有智能体的最终状态

2.1 一阶一维系统

lim ⁡ t → ∞ ∥ p j − p i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \end{aligned} \tag{} tlimpjpi=0()

2.2 一阶二维系统

lim ⁡ t → ∞ ∥ p j x − p i x ∥ = 0 lim ⁡ t → ∞ ∥ p j y − p i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \end{aligned} \tag{} tlimpjxpixtlimpjypiy=0=0()

2.3 二阶一维系统

lim ⁡ t → ∞ ∥ p j − p i ∥ = 0 lim ⁡ t → ∞ ∥ v j − v i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j - v_i\| &= 0 \\ \end{aligned} \tag{} tlimpjpitlimvjvi=0=0()

2.4 二阶二维系统

lim ⁡ t → ∞ ∥ p j x − p i x ∥ = 0 lim ⁡ t → ∞ ∥ p j y − p i y ∥ = 0 lim ⁡ t → ∞ ∥ v j x − v i x ∥ = 0 lim ⁡ t → ∞ ∥ v j y − v i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^x - v_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^y - v_i^y\| &= 0 \\ \end{aligned} \tag{} tlimpjxpixtlimpjypiytlimvjxvixtlimvjyviy=0=0=0=0()


3. 模型转换

3.1 一阶一维系统

单个智能体存在的系统模型为
[ p ˙ i ] = [ 0 ] [ p i ] + [ 1 ] [ u i ] = 0 ⋅ X + 1 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ \end{matrix}\right] + \left[\begin{matrix} 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \\ &= 0 \cdot X + 1 \cdot U \end{aligned} \tag{} [p˙i]=[0][pi]+[1][ui]=0X+1U()

多个智能体存在的系统模型为
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = [ 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 ] + [ 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = 0 N × N ⋅ X + I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{0_{N \times N} \cdot X + I_N \cdot U} \end{aligned} \tag{} p˙1p˙2p˙3 = 000000000 p1p2p3 + 100010001 u1u2u3 =0N×NX+INU()

3.2 一阶二维系统

单个智能体存在的系统模型为
[ p ˙ i x p ˙ i y ] = [ 0 0 0 0 ] [ p i x p i y ] + [ 1 0 0 1 ] [ u i x u i y ] = 0 2 × 2 ⋅ X + I 2 ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i^x \\ \dot{p}_i^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= 0_{2\times 2} \cdot X + I_2 \cdot U \end{aligned} \tag{} [p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2X+I2U()

3.2.1 方式一

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y p 2 x p 2 y p 3 x p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ p_2^x \\ p_2^y \\ p_3^x \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y = 000000000000000000000000000000000000 p1xp1yp2xp2yp3xp3y + 100000010000001000000100000010000001 u1xu1yu2xu2yu3xu3y =02N×2NX+I2NU()

3.2.2 方式二

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{} p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y = 000000000000000000000000000000000000 p1xp2xp3xp1yp2yp3y + 100000010000001000000100000010000001 u1xu2xu3xu1yu2yu3y =02N×2NX+I2NU()

3.3 二阶一维系统

单个智能体存在的系统模型为
[ p ˙ i v ˙ i ] = [ 0 1 0 0 ] [ p i v i ] + [ 0 1 ] [ u i ] ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \dot{v}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ v_i \\ \end{matrix}\right] + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \end{aligned} \tag{} [p˙iv˙i]=[0010][pivi]+[01][ui]()

3.3.1 方式一

多个智能体存在的系统模型为
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ] [ p 1 v 1 p 2 v 2 p 3 v 3 ] + [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 u 2 u 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ v_1 \\ p_2 \\ v_2 \\ p_3 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} p˙1v˙1p˙2v˙2p˙3v˙3 = 000000100000000000001000000000000010 p1v1p2v2p3v3 + 010000000100000001 u1u2u3 =IN[0010]X+IN[01]U()

3.3.2 方式二

多个智能体存在的系统模型为
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 v 1 v 2 v 3 ] + [ 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = [ 0 N × N I N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N I N ] ⋅ U = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ v_1 \\ v_2 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & I_N \\ 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} \\ I_N \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} p˙1p˙2p˙3v˙1v˙2v˙3 = 000000000000000000100000010000001000 p1p2p3v1v2v3 + 000100000010000001 u1u2u3 =[0N×N0N×NIN0N×N]X+[0N×NIN]U=[0010]INX+[01]INU()

3.4 二阶二维系统

单个智能体存在的系统模型为

[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) \begin{aligned} \left[\begin{matrix} \dot{p}^x_i \\ \dot{p}^y_i \\ \dot{v}^x_i \\ \dot{v}^y_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ v_i^x \\ v_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= a \otimes I_2 \cdot X_i + b \otimes I_2 \cdot U_i \end{aligned} \tag{} p˙ixp˙iyv˙ixv˙iy = 0000000010000100 pixpiyvixviy + 00100001 [uixuiy]=aI2Xi+bI2Ui()

3.4.1 方式一

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 1 y v ˙ 1 x v ˙ 1 y p ˙ 2 x p ˙ 2 y v ˙ 2 x v ˙ 2 y p ˙ 3 x p ˙ 3 y v ˙ 3 x v ˙ 3 y ] = [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y v 1 x v 1 y p 2 x p 2 y v 2 x v 2 y p 3 x p 3 y v 3 x v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = I N ⊗ [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⋅ X + I N ⊗ [ 0 0 0 0 1 0 0 1 ] ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{v}_1^x \\ \dot{v}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{v}_2^x \\ \dot{v}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \dot{v}_3^x \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ v_1^x \\ v_1^y \\ p_2^x \\ p_2^y \\ v_2^x \\ v_2^y \\ p_3^x \\ p_3^y \\ v_3^x \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{} p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y = 000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100 p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y + 001000000000000100000000000000100000000000010000000000000010000000000001 u1xu1yu2xu2yu3xu3y =IN 0000000010000100 X+IN 00100001 U()

3.4.2 方式二

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y v 1 x v 2 x v 3 x v 1 y v 2 y v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = [ 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N I N ] ⋅ U = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U ( ) \begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ v_1^x \\ v_2^x \\ v_3^x \\ v_1^y \\ v_2^y \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} & I_N & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & I_{N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} \\ I_{N} & 0_{N\times N} \\ 0_{N\times N} & I_{N} \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{} p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y = 000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000 p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y + 000000100000000000010000000000001000000000000100000000000010000000000001 u1xu2xu3xu1yu2yu3y = 0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×N X+ 0N×N0N×NIN0N×N0N×N0N×N0N×NIN U= 0000000010000100 INX+ 00100001 INU()


Logo

更多推荐