【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。
文章目录1. 二阶系统模型1.1 普通一维二阶系统1.2 普通二维二阶系统2. 控制目标3. 控制协议1. 二阶系统模型1.1 普通一维二阶系统{pi˙=vivi˙=ui()\left\{\begin{aligned}\dot{p_i} & = v_i \\\dot{v_i} & = u_i \\\end{aligned}\right.\tag{}{pi˙vi˙=vi=
【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。
【控制】多智能体系统总结。4.控制协议。
【控制】多智能体系统总结。5.系统合并。
文章目录
1. 系统模型
1.1 一阶一维系统
{ p ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = u_i \\ \end{aligned}\right. \tag{} {p˙i=ui()
1.2 一阶二维系统
{ p ˙ i x = u i x p ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = u_i^x \\ \dot{p}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} {p˙ixp˙iy=uix=uiy()
1.3 二阶一维系统
{ p ˙ i = v i v ˙ i = u i ( ) \left\{\begin{aligned} \dot{p}_i & = v_i \\ \dot{v}_i & = u_i \\ \end{aligned}\right. \tag{} {p˙iv˙i=vi=ui()
1.4 二阶二维系统
{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) \left\{\begin{aligned} \dot{p}_i^x & = v_i^x \\ \dot{p}_i^y & = v_i^y \\ \dot{v}_i^x & = u_i^x \\ \dot{v}_i^y & = u_i^y \\ \end{aligned}\right. \tag{} ⎩ ⎨ ⎧p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()
2. 控制目标
控制目标为所有智能体的最终状态
2.1 一阶一维系统
lim t → ∞ ∥ p j − p i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥=0()
2.2 一阶二维系统
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥=0=0()
2.3 二阶一维系统
lim t → ∞ ∥ p j − p i ∥ = 0 lim t → ∞ ∥ v j − v i ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j - p_i\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j - v_i\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pj−pi∥t→∞lim∥vj−vi∥=0=0()
2.4 二阶二维系统
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 lim t → ∞ ∥ v j x − v i x ∥ = 0 lim t → ∞ ∥ v j y − v i y ∥ = 0 ( ) \begin{aligned} \lim_{t\rightarrow \infty} \|p_j^x - p_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|p_j^y - p_i^y\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^x - v_i^x\| &= 0 \\ \lim_{t\rightarrow \infty} \|v_j^y - v_i^y\| &= 0 \\ \end{aligned} \tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥t→∞lim∥vjx−vix∥t→∞lim∥vjy−viy∥=0=0=0=0()
3. 模型转换
3.1 一阶一维系统
单个智能体存在的系统模型为
[
p
˙
i
]
=
[
0
]
[
p
i
]
+
[
1
]
[
u
i
]
=
0
⋅
X
+
1
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ \end{matrix}\right] + \left[\begin{matrix} 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \\ &= 0 \cdot X + 1 \cdot U \end{aligned} \tag{}
[p˙i]=[0][pi]+[1][ui]=0⋅X+1⋅U()
多个智能体存在的系统模型为
[
p
˙
1
p
˙
2
p
˙
3
]
=
[
0
0
0
0
0
0
0
0
0
]
[
p
1
p
2
p
3
]
+
[
1
0
0
0
1
0
0
0
1
]
[
u
1
u
2
u
3
]
=
0
N
×
N
⋅
X
+
I
N
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{0_{N \times N} \cdot X + I_N \cdot U} \end{aligned} \tag{}
p˙1p˙2p˙3
=
000000000
p1p2p3
+
100010001
u1u2u3
=0N×N⋅X+IN⋅U()
3.2 一阶二维系统
单个智能体存在的系统模型为
[
p
˙
i
x
p
˙
i
y
]
=
[
0
0
0
0
]
[
p
i
x
p
i
y
]
+
[
1
0
0
1
]
[
u
i
x
u
i
y
]
=
0
2
×
2
⋅
X
+
I
2
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_i^x \\ \dot{p}_i^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= 0_{2\times 2} \cdot X + I_2 \cdot U \end{aligned} \tag{}
[p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2⋅X+I2⋅U()
3.2.1 方式一
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
1
y
p
˙
2
x
p
˙
2
y
p
˙
3
x
p
˙
3
y
]
=
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
1
y
p
2
x
p
2
y
p
3
x
p
3
y
]
+
[
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
1
y
u
2
x
u
2
y
u
3
x
u
3
y
]
=
0
2
N
×
2
N
⋅
X
+
I
2
N
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ p_2^x \\ p_2^y \\ p_3^x \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{}
p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y
=
000000000000000000000000000000000000
p1xp1yp2xp2yp3xp3y
+
100000010000001000000100000010000001
u1xu1yu2xu2yu3xu3y
=02N×2N⋅X+I2N⋅U()
3.2.2 方式二
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
2
x
p
˙
3
x
p
˙
1
y
p
˙
2
y
p
˙
3
y
]
=
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
2
x
p
3
x
p
1
y
p
2
y
p
3
y
]
+
[
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
2
x
u
3
x
u
1
y
u
2
y
u
3
y
]
=
0
2
N
×
2
N
⋅
X
+
I
2
N
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \red{0_{2N \times 2N} \cdot X + I_{2N} \cdot U} \end{aligned} \tag{}
p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y
=
000000000000000000000000000000000000
p1xp2xp3xp1yp2yp3y
+
100000010000001000000100000010000001
u1xu2xu3xu1yu2yu3y
=02N×2N⋅X+I2N⋅U()
3.3 二阶一维系统
单个智能体存在的系统模型为
[
p
˙
i
v
˙
i
]
=
[
0
1
0
0
]
[
p
i
v
i
]
+
[
0
1
]
[
u
i
]
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_i \\ \dot{v}_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i \\ v_i \\ \end{matrix}\right] + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i \\ \end{matrix}\right] \end{aligned} \tag{}
[p˙iv˙i]=[0010][pivi]+[01][ui]()
3.3.1 方式一
多个智能体存在的系统模型为
[
p
˙
1
v
˙
1
p
˙
2
v
˙
2
p
˙
3
v
˙
3
]
=
[
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
]
[
p
1
v
1
p
2
v
2
p
3
v
3
]
+
[
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
u
2
u
3
]
=
I
N
⊗
[
0
1
0
0
]
⋅
X
+
I
N
⊗
[
0
1
]
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{v}_1 \\ \dot{p}_2 \\ \dot{v}_2 \\ \dot{p}_3 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ v_1 \\ p_2 \\ v_2 \\ p_3 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{}
p˙1v˙1p˙2v˙2p˙3v˙3
=
000000100000000000001000000000000010
p1v1p2v2p3v3
+
010000000100000001
u1u2u3
=IN⊗[0010]⋅X+IN⊗[01]⋅U()
3.3.2 方式二
多个智能体存在的系统模型为
[
p
˙
1
p
˙
2
p
˙
3
v
˙
1
v
˙
2
v
˙
3
]
=
[
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
p
2
p
3
v
1
v
2
v
3
]
+
[
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
]
[
u
1
u
2
u
3
]
=
[
0
N
×
N
I
N
0
N
×
N
0
N
×
N
]
⋅
X
+
[
0
N
×
N
I
N
]
⋅
U
=
[
0
1
0
0
]
⊗
I
N
⋅
X
+
[
0
1
]
⊗
I
N
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_3 \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1 \\ p_2 \\ p_3 \\ v_1 \\ v_2 \\ v_3 \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1 \\ u_2 \\ u_3 \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & I_N \\ 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} \\ I_N \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 1 \\ 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 \\ 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{}
p˙1p˙2p˙3v˙1v˙2v˙3
=
000000000000000000100000010000001000
p1p2p3v1v2v3
+
000100000010000001
u1u2u3
=[0N×N0N×NIN0N×N]⋅X+[0N×NIN]⋅U=[0010]⊗IN⋅X+[01]⊗IN⋅U()
3.4 二阶二维系统
单个智能体存在的系统模型为
[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) \begin{aligned} \left[\begin{matrix} \dot{p}^x_i \\ \dot{p}^y_i \\ \dot{v}^x_i \\ \dot{v}^y_i \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_i^x \\ p_i^y \\ v_i^x \\ v_i^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_i^x \\ u_i^y \\ \end{matrix}\right] \\ &= a \otimes I_2 \cdot X_i + b \otimes I_2 \cdot U_i \end{aligned} \tag{} p˙ixp˙iyv˙ixv˙iy = 0000000010000100 pixpiyvixviy + 00100001 [uixuiy]=a⊗I2⋅Xi+b⊗I2⋅Ui()
3.4.1 方式一
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
1
y
v
˙
1
x
v
˙
1
y
p
˙
2
x
p
˙
2
y
v
˙
2
x
v
˙
2
y
p
˙
3
x
p
˙
3
y
v
˙
3
x
v
˙
3
y
]
=
[
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
1
y
v
1
x
v
1
y
p
2
x
p
2
y
v
2
x
v
2
y
p
3
x
p
3
y
v
3
x
v
3
y
]
+
[
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
1
y
u
2
x
u
2
y
u
3
x
u
3
y
]
=
I
N
⊗
[
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
]
⋅
X
+
I
N
⊗
[
0
0
0
0
1
0
0
1
]
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_1^y \\ \dot{v}_1^x \\ \dot{v}_1^y \\ \dot{p}_2^x \\ \dot{p}_2^y \\ \dot{v}_2^x \\ \dot{v}_2^y \\ \dot{p}_3^x \\ \dot{p}_3^y \\ \dot{v}_3^x \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_1^y \\ v_1^x \\ v_1^y \\ p_2^x \\ p_2^y \\ v_2^x \\ v_2^y \\ p_3^x \\ p_3^y \\ v_3^x \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_1^y \\ u_2^x \\ u_2^y \\ u_3^x \\ u_3^y \\ \end{matrix}\right] \\ &= \red{ I_N \otimes \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \cdot X + I_N \otimes \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \cdot U} \end{aligned} \tag{}
p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y
=
000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100
p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y
+
001000000000000100000000000000100000000000010000000000000010000000000001
u1xu1yu2xu2yu3xu3y
=IN⊗
0000000010000100
⋅X+IN⊗
00100001
⋅U()
3.4.2 方式二
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
2
x
p
˙
3
x
p
˙
1
y
p
˙
2
y
p
˙
3
y
v
˙
1
x
v
˙
2
x
v
˙
3
x
v
˙
1
y
v
˙
2
y
v
˙
3
y
]
=
[
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
2
x
p
3
x
p
1
y
p
2
y
p
3
y
v
1
x
v
2
x
v
3
x
v
1
y
v
2
y
v
3
y
]
+
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
2
x
u
3
x
u
1
y
u
2
y
u
3
y
]
=
[
0
N
×
N
0
N
×
N
I
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
I
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
]
⋅
X
+
[
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
I
N
0
N
×
N
0
N
×
N
I
N
]
⋅
U
=
[
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
]
⊗
I
N
⋅
X
+
[
0
0
0
0
1
0
0
1
]
⊗
I
N
⋅
U
(
)
\begin{aligned} \left[\begin{matrix} \dot{p}_1^x \\ \dot{p}_2^x \\ \dot{p}_3^x \\ \dot{p}_1^y \\ \dot{p}_2^y \\ \dot{p}_3^y \\ \dot{v}_1^x \\ \dot{v}_2^x \\ \dot{v}_3^x \\ \dot{v}_1^y \\ \dot{v}_2^y \\ \dot{v}_3^y \\ \end{matrix}\right] &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p_1^x \\ p_2^x \\ p_3^x \\ p_1^y \\ p_2^y \\ p_3^y \\ v_1^x \\ v_2^x \\ v_3^x \\ v_1^y \\ v_2^y \\ v_3^y \\ \end{matrix}\right] + \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{matrix}\right] \left[\begin{matrix} u_1^x \\ u_2^x \\ u_3^x \\ u_1^y \\ u_2^y \\ u_3^y \\ \end{matrix}\right] \\ &= \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} & I_N & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & I_{N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} & 0_{N\times N} & 0_{N\times N} \\ \end{matrix}\right] \cdot X + \left[\begin{matrix} 0_{N\times N} & 0_{N\times N} \\ 0_{N\times N} & 0_{N\times N} \\ I_{N} & 0_{N\times N} \\ 0_{N\times N} & I_{N} \\ \end{matrix}\right] \cdot U \\ &= \red{ \left[\begin{matrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{matrix}\right] \otimes I_N \cdot X + \left[\begin{matrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] \otimes I_N \cdot U} \end{aligned} \tag{}
p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y
=
000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000
p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y
+
000000100000000000010000000000001000000000000100000000000010000000000001
u1xu2xu3xu1yu2yu3y
=
0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×N
⋅X+
0N×N0N×NIN0N×N0N×N0N×N0N×NIN
⋅U=
0000000010000100
⊗IN⋅X+
00100001
⊗IN⋅U()
更多推荐
所有评论(0)