智谱CogVideoX视频开源大模型
视频创作平台
·
一、资料地址
GitHub - THUDM/CogVideo: Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)
CogVideo/README_zh.md at main · THUDM/CogVideo · GitHub
二、CogVideo部署与实现
方式1-基于源码部署
步骤一:下载源码
cd /workspace/
git clone https://github.com/THUDM/CogVideo.git
步骤二:下载依赖库
cd /workspace/CogVideo/
pip install -r requirements.txt
cd sat
pip install -r requirements.txt
pip install omegaconf
步骤三:下载模型库
mkdir THUDM
cd THUDM
git lfs install
git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-5b-I2V.git
步骤四:测试
cd ..
cd inference
python cli_demo.py
方式2-基于Docker部署
步骤一:安装docker
apt install podman-docker
apt install docker.io
步骤二:启动docker
systemctl start docker
systemctl enable docker
步骤三:下载
docker run -itd --name=cogvideo -p 7878:7878 --gpus=all registry.cn-hangzhou.aliyuncs.com/guoshiyin/cogvideo:v3
方式3-基于modelscope调用
步骤一:下载依赖库
pip install modelscope
pip install torch
pip install accelerate
pip install sentencepiece
pip install --upgrade opencv-python transformers
pip install git+https://github.com/huggingface/diffusers.git@878f609aa5ce4a78fea0f048726889debde1d7e8#egg=diffusers # Still in PR
步骤二:编写代码
mkdir /workspace/
touch cli.py
vi cli.py
在cli.py中添加代码如下:
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until the next release.
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel
from torchao.quantization import quantize_, int8_weight_only
quantization = int8_weight_only
text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b-I2V", subfolder="text_encoder", torch_dtype=torch.bfloat16)
quantize_(text_encoder, quantization())
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b-I2V",subfolder="transformer", torch_dtype=torch.bfloat16)
quantize_(transformer, quantization())
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5b-I2V", subfolder="vae", torch_dtype=torch.bfloat16)
quantize_(vae, quantization())
# Create pipeline and run inference
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
text_encoder=text_encoder,
transformer=transformer,
vae=vae,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
prompt = "A little girl is riding a bicycle at high speed. Focused, detailed, realistic."
image = load_image(image="input.jpg")
video = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
步骤三:调试
cd /workspace/
python cli.py
三、视频创作平台
1、清影-智谱
体验地址:智谱清言
提示词
一只熊猫,穿着一件红色的小夹克,戴着一顶小帽子,坐在宁静的竹林里的木凳上。熊猫毛茸茸的爪子拨弄着一把微型原声吉他,发出柔和的旋律。附近,其他几只熊猫聚集在一起,好奇地看着,有些还有节奏地鼓掌。阳光透过高大的竹子,在现场投下柔和的光芒。熊猫的脸很有表情,在玩耍时表现出专注和快乐。背景包括一条小溪和生机勃勃的绿叶,增强了这场独特音乐表演的宁静和神奇氛围。
写实描绘,近距离,猎豹卧在地上睡觉,身体微微起伏
低角度向上推进,缓缓抬头,冰山上突然出现一条恶龙,然后恶龙发现你,冲向你。好莱坞电影风
一只白色小兔子戴着黑框眼镜正在像人一样敲键盘。表情严肃认真,桌子上有一盘月饼,侧写镜头,背景是窗户,夜晚,大大的月亮
其它视频生成平台
2、即梦-字节跳动
3、可灵-快手
4、pixverse-爱诗科技
PixVerse - Create breath-taking videos with PixVerse AI
5、寻光-阿里
参考地址:
更多推荐
所有评论(0)