
LlamaIndex团队技术报告:“RAG的尽头是Agent”
LlamaIndex团队2024年Talk:报告人:Jerry Liu, LlamaIndex co-founder/CEO,报告主题:“”,主题原文:“Beyond RAG: Building Advanced Context-Augmented LLM Applications”。看完报告,一个通俗点的理解是“”,概要内容如下:RAG的局限性:RAG最初是为简单问题和小型文档集设计的,它通常包
LlamaIndex团队2024年Talk:
-
报告人:Jerry Liu, LlamaIndex co-founder/CEO,
-
报告主题:“超越RAG:构建高级上下文增强型大型语言模型(LLM)应用”,
-
主题原文:“Beyond RAG: Building Advanced Context-Augmented LLM Applications”。
看完报告,一个通俗点的理解是“RAG的尽头是Agent”,概要内容如下:
-
RAG的局限性:RAG最初是为简单问题和小型文档集设计的,它通常包括数据解析、索引检索和简单的问答。然而,它在处理更复杂的问题时存在局限性,例如总结整个年度报告、比较问题、结构化分析和语义搜索等。
-
Agent的引入:为了解决RAG的局限性,文档提出了引入Agent的概念。Agent是一种更高级的系统,它能够执行多轮对话、查询/任务规划、工具使用、反思和记忆维护等更复杂的功能。
-
从RAG到Agent的转变:提到了从RAG到Agent的转变,这涉及到增加以下几个层次的功能:
-
多轮对话:与用户进行更深入的互动。
-
查询/任务规划层:能够理解并规划复杂的查询和任务。
-
工具接口:与外部环境进行交互,使用工具来辅助任务执行。
-
反思:能够自我评估并改进执行过程。
-
记忆:维护用户交互的历史,以提供个性化服务。
- Agent的不同层次:从简单到高级Agent的不同层次,包括:
-
简单Agent:成本较低,延迟较低,但功能有限。
-
高级Agent:成本较高,延迟较高,但提供更复杂的功能,如动态规划和执行。
-
ReAct:ReAct(Reasoning + Acting with LLMs),这是一个结合了推理和行动的LLM系统,它利用查询规划、工具使用和记忆来执行更复杂的任务。
-
LLMCompiler:一个Agent编译器,用于并行多功能规划和执行,它通过生成步骤的有向无环图(DAG)来优化任务执行。
-
自我反思和可观察性:Agent能够通过自我反思和反馈来改进执行,同时提供可观察性,以便开发者能够追踪和理解Agent的行为。
-
多Agent系统:多Agent系统的概念,其中多个Agent可以同步或异步地交互,以执行更复杂的任务。
详细报告内容:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)