
写给小白的大模型应用科普:AI Agent篇
所以,AI Agent(智能体) 是一种能利用大模型进行自主的任务规划、决策与执行的系统。它的核心思路是让人工智能不仅能回答问题,还能像人一样主动完成一系列关联性的任务;不仅有聪明的“大脑”,还有灵活的“手脚”,必要的时候还会使用“工具”。如果说大模型像一位百科全书式的学者,而AI Agent就像一个“办事能力强的大管家”。这位管家会根据你的需求,把任务拆解成多个步骤,并主动找到资源或工具来完成。
RAG(检索增强生成)与Agent(智能体)可谓是大模型应用领域最被认可与看好的主流应用形态,本篇我们继续用最易懂的语言教你快速认识AI Agent。
尽管大部分人是在LLM(大语言模型)兴起后才接触AI Agent,但它并不是一个完全新生的概念(RAG也是一样),只是因为LLM给AI Agent带来了全新的可能与突破。所以本文的****AI Agent也是特指基于LLM的自主型人工智能实体。
01.为什么需要Agent?
大模型已经非常强大,能够生成内容、回答问题甚至协助编程。那为什么我们还需要 AI Agent?
简单的说,大模型就像一个“超级大脑”,知识丰富、能力强大,但它的问题是“只懂回答,不懂行动”。你可以让它生成一篇文章、回答一个问题,但如果你希望它主动完成一系列复杂任务,仅靠大模型自身是不够的。比如,你可以问大模型:
“如何调查与获取竞争对手产品的信息?”
甚至也可以结合RAG让大模型来回答:
“总结我们公司最新某某产品的特点?”
但是如果你让大模型来帮你完成如下任务:
“对比A公司竞品与我公司产品的差异,把结果发送到我邮箱。“
这时候大模型就无能为力了。原因是它只有聪明的”大脑“,但却没有”手脚“、也没有”工具“,因此无法自主的完成任务。所以AI需要这样的进化:
这就是为什么需要Agent —— 因为我们需要AI不仅****是被动的回答问题,更需要能够主动的解决问题。
02.什么是Agent?
所以,AI Agent(智能体) 是一种能利用大模型进行自主的任务规划、决策与执行的系统。它的核心思路是让人工智能不仅能回答问题,还能像人一样主动完成一系列关联性的任务;不仅有聪明的“大脑”,还有灵活的“手脚”,必要的时候还会使用“工具”。
如果说大模型像一位百科全书式的学者,而AI Agent就像一个“办事能力强的大管家”。这位管家会根据你的需求,把任务拆解成多个步骤,并主动找到资源或工具来完成。比如这个任务:
“对比A公司与我公司产品的差异,把结果发送到我邮箱。“
Agent会借助大模型规划任务步骤并执行:
-
先从互联网搜索A公司产品信息(使用Web搜索工具)
-
再从企业知识库检索我公司信息(使用本地查询工具)
-
生成对比报告(让大模型完成)
-
发送邮件到邮箱(使用邮件发送工具)
可以看到,基于大模型的AI Agent,就是把强大的语言模型和一套可以主动行动的机制结合起来,让它不仅能“懂”能“想”,还会“做”。
所以Agent与大模型之间的区别可以总结为:
-
大模型只是一个大脑,而Agent是一个完整体
-
大模型只会告诉你怎么做,而Agent会帮你做
-
模型本身不会使用工具,而Agent会使用工具
-
大模型通常不会记忆,而Agent则具备记忆能力
-
Agent借助大模型来实现理解与规划能力
03.Agent的常见应用场景?
AI Agent可以在大量的领域与场景下展现出非凡的能力,包括但不限于个人助理、客户服务、市场营销、决策支持、游戏仿真、智能家居、无人驾驶、机器人等。以下是一些实际的例子:
1.智能客服
比如一家公司需要全天候解答客户问题。AI Agent可以根据客户问题调用大模型生成答案,还能主动查询库存信息、处理订单甚至提供物流状态。
2.编程助手
开发人员需要解决某个技术问题,AI Agent不仅能提供代码示例,还能直接运行代码,调试错误,甚至优化性能。
3.个人助理
Agent可以帮你管理日程、订餐、处理邮件、监控股票市场,并根据你的偏好提供个性化建议,而不只是回答问题。
4.智能家居
家庭中的Agent可以连接灯光、空调、安防摄像头等设备,根据家庭成员的指令与设定,主动调节环境,控制家具设备。
5.科学研究
在科研领域,AI Agent可以自动收集最新文献、设计实验流程、分析实验数据,并生成总结报告。
04.Agent的基本工作原理?
AI Agent的工作原理可以总结为以下几个步骤:
1.输入理解:用户提出一个任务(比如发送一份产品对比报告),Agent首先借助大模型对用户输入指令进行理解和解析,识别任务目标和约束条件。
2.任务规划:基于理解的目标,Agent 会规划完成任务的步骤,并决定采取哪些行动。这可能涉及将目标分解成多个子任务,确定任务优先级与执行顺序等(如获取竞品信息、查询企业产品信息、生成对比报告、发送电子邮件)。
3.任务执行与反馈:通过大模型或外部工具完成每个子任务(如调用搜索引擎、查询数据库、生成对比结果、调用电子邮件发送服务);在此过程中,Agent会搜集与观察子任务结果,及时处理问题,必要时对任务进行调整(如任务执行发生了错误,可能会进行多次迭代尝试)。
4.任务完成与交付: 将任务的结果汇总并输出(如生成对比报告与邮件发送回执)。
当然,这只是Agent的核心处理流程。在实际应用中,根据环境与需求的差异,可能存在高度定制且复杂Agent工作流。
05.Agent系统的基本组成?
获得广泛认可的Agent架构来自于OpenAI公司的总结:
可以总结成:
Agent = LLM + 记忆 + 规划技能 + 工具使用
1.大模型:提供核心的语言理解、推理与生成能力,是整个Agent的“大脑”。
2.任务规划:对复杂任务借助大模型进行分解、规划和调度,并及时观察子任务执行的结果与反馈,对任务及时调整。
3.工具使用:与外部工具(如API、数据库、硬件设备)进行交互,扩展智能体的能力,执行任务,相当于Agent的“手脚”。
4.记忆:这是Agent的“存储器”,可用来存储短期的记忆(如一次任务过程中的多次人类交互)或长期记忆(如记录使用者的任务历史、个人信息、兴趣便好等)。
除此之外,通常Agent还需要提供一个直观的入口,让用户可以方便地给Agent下达指令或查看结果,这个入口可以是可视化的文字输入、语音输入,或者对外开放的API接口。
05.Agent面临最大的挑战?
尽管LLM的横空出世与爆炸式发展给Agent开辟了新的天地,但必须看到,当前AI Agent仍然处于技术积累与实验阶段,尽管很多大模型厂家推出了Agent平台甚至商店,但主要集中在个人助理、娱乐、写作等对可靠性与确定性相对较低的领域,而在真正的生产力场景,还面临众多挑战。而最主要的问题来自:
AI Agent将LLM作为核心组件,用于理解用户需求、计划任务、生成响应并执行操作。但在一些对准确性、可预测性、可追溯性要求极高的场景中,LLM的不确定性会带来一些潜在问题。
-
错误的任务规划
LLM误解了用户的意图或语义,可能会导致错误的计划与结果
-
错误的工具调用
如果LLM生成了错误的工具调用逻辑,可能会导致任务失败
-
生成错误的建议
在医疗、法律、金融等需要高度准确的领域,不确定性可能带来严重后果
-
安全与伦理问题
LLM可能会根据不完整的上下文生成带有潜在风险甚至违反伦理的建议
-
稳定性和可重复性
在工业应用中,系统的行为需要可重复且稳定,而LLM由于其生成概率特性,可能在相同条件下输出不同的结果
在模型厂家、开发工具提供商、应用开发商的共同努力下,这些问题正在不断得到优化与改善。
06.Agent未来的发展趋势?
AI Agent虽然还处于发展的初期,但未来潜力巨大,简单展望其发展趋势:
1.更强的自主性与智能化
随着技术进步,AI Agent将拥有更强的人类意图理解、逻辑推理和复杂任务处理能力,能够在更多场景下自主决策,执行多样的任务。
2.深度行业化与定制化
更多的领域与行业会定制化自己的AI Agent,比如IT领域的开发助手、医疗领域的诊断助手、智能家居的家庭助手、智能实体机器人等。
3.更强的个性化,人性化
AI Agent会具备更强的个性化能力,能够在与使用者的长期交互中学习使用者的习惯、个人信息与兴趣偏好等,以提供更贴心的服务。
4. 持续学习和自适应能力
AI Agent将具备持续学习的能力,能够根据环境变化和新数据进行自我调整和优化,持续提升自身的智能水平。
5. 伦理与法规考量更受重视
随着AI Agent的普及,对隐私、安全和伦理的关注将促使相关法规和标准的制定,确保AI技术的负责任发展。
AI Agent的出现,为人工智能技术赋予了主动行动的能力,让它从“被动回答问题”进化到“主动完成任务”。无论是个人生活、企业运营还是科学研究,AI Agent都在逐步展现它的潜力。可以预见,随着技术的不断进步,AI Agent将成为我们工作和生活中不可或缺的助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)