
【Paper】2019_Event-triggered based scaled consensus for multi-agent systems
【Paper】2019_Event-triggered based scaled consensus for multi-agent systems
文章目录
1 Introduction
2 Preparation and problem description
2.1 Graph theory
2.2 Problem formulation
x ˙ i ( t ) = u i ( t ) , i = 1 , 2 , ⋯ , N (1) \begin{aligned} \dot{x}_i(t) &= u_i(t), \quad i=1,2,\cdots,N \end{aligned} \tag{1} x˙i(t)=ui(t),i=1,2,⋯,N(1)
3 Centralized approach
u i ( t ) = u i ( t k ) , ∀ t ∈ [ t k , t k + 1 ) \begin{aligned} u_i(t) &= u_i(t_k), \quad \forall t \in [t_k, t_{k+1}) \end{aligned} ui(t)=ui(tk),∀t∈[tk,tk+1)
u i ( t ) = ∑ j ∈ N i a i j ( α i j x j ( t k ) − x i ( t k ) ) , ∀ t ∈ [ t k , t k + 1 ) (2) \begin{aligned} u_i(t) &= \sum_{j\in N_i} a_{ij} (\alpha_{ij} x_j(t_k) - x_i(t_k)), \forall t \in [t_k, t_{k+1}) \end{aligned} \tag{2} ui(t)=j∈Ni∑aij(αijxj(tk)−xi(tk)),∀t∈[tk,tk+1)(2)
4 Distributed approach
First, the event triggering time sequence for each agent is denoted as t k i t^i_k tki, k = 0 , 1 , ⋯ , ∀ i ∈ V k=0,1,\cdots, \forall i \in \mathcal{V} k=0,1,⋯,∀i∈V. The measurement error for agent i i i is defined as:
e i ( t ) = x i ( t k i ) − x i ( t ) , ∀ t ∈ [ t k i , t k + 1 i ) (10) \begin{aligned} e_i(t) &= x_i(t^i_k) - x_i(t), \quad \forall t \in [t^i_k, t^i_{k+1}) \end{aligned} \tag{10} ei(t)=xi(tki)−xi(t),∀t∈[tki,tk+1i)(10)
Define the relative measurement for agent i i i as
z i ( t ) = ∑ j ∈ N i a i j ( α i j x j ( t ) − x i ( t ) ) (12) \begin{aligned} z_i(t) &= \sum_{j\in N_i} a_{ij} (\alpha_{ij} x_j(t) - x_i(t)) \end{aligned} \tag{12} zi(t)=j∈Ni∑aij(αijxj(t)−xi(t))(12)
distributed control input for agent i i i is designed as
u i ( t ) = ∑ j ∈ N i a i j ( α i j x j ( t k ′ j ) − x i ( t k i ) ) u_i(t) = \sum_{j\in N_i} a_{ij} (\alpha_{ij} x_j(t^j_{k^\prime}) - x_i(t^i_k)) ui(t)=j∈Ni∑aij(αijxj(tk′j)−xi(tki))
where
k ′ ≜ a r g min l ∈ N + : t > t l j ( t − t l j ) k^\prime \triangleq arg\min_{l \in \N_+: t > t^j_l} (t-t^j_l) k′≜argminl∈N+:t>tlj(t−tlj).
5 Simulation
5.1 Centralized case
程序 Main_Centralized.m
效果如下
修改程序中不同的 Lambda 值,可以得到以下三种效果。
5.2 Distributed case
程序 Main_Distributed.m
效果如下
Ref
程序有偿,需要代码可加+V:Zhao-Jichao
更多推荐
所有评论(0)