
大模型LLM应用开发:手把手教你设计 Agent 用户交互(一)什么是智能体?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
LangChain 可以算是 LLM 时代做 AI 应用开发必备的框架和平台,从模型选择、数据库链接与各种 Agent 搭建等,AI 应用的搭建、运行和管理都可以在 LangChain 上进行。
某种意义上,LangChain 可能是最了解 Agent(智能体)的平台。
最近,LangChain 创始人 Harrison Chase 发表了一系列对于 Agent 的设计、规划和用户交互设计的探讨。对于当下如何理解 Agent、如何设计 AI 应用的交互上,有很多来自第一线的认知,推荐一读。
一些有意思的点:
-
什么是智能体?每个人似乎都有不同的定义,吴恩达的建议是,「与其争论什么应被归类为真正的智能体,不如承认系统具有不同程度的智能体特性(agentic)」,就像自动驾驶汽车有不同的自动化等级一样。
-
目前最主流的 UX 是「流式聊天」,一个很典型的例子是 ChatGPT,用户通过自然语言和 LLM 进行交互,不过,不少创业者相信,除了聊天之外,还有更多的 UX 模式值得考虑。
-
和流式聊天最大的区别在于,非流式聊天的响应是以完整的批次返回的,这是个缺点,因为你不知道系统内部发生了什么,但另一方面,Linus Lee 提到,「我有意将界面设计得尽可能不透明」,不透明的界面需要一定程度的信任,但信任一旦建立,你就只需要把任务委派给智能体,而不必过多干预。
-
如何建立用户对智能体的信任?一个简单的方式,把每次操作展示给用户。除此之外,不仅让用户看到发生了什么,还要让他们能够纠正智能体的操作。用户可以在工作流中途暂停,提供反馈,然后让智能体继续执行。
-
需要将用户从「在循环中」转变为「在循环上」。「在循环上」意味着智能体需要向用户展示其执行的所有中间步骤,用户可以在工作流中途暂停,提供反馈,然后让智能体继续执行。一个已经实现了类似用户体验的应用是 Devin——AI 软件工程师。
一、什么是智能体?
「什么是智能体?」
我几乎每天都会被问到这个问题。在 LangChain,我们构建工具帮助开发者创建大语言模型(LLM)应用程序,特别是那些作为推理引擎并与外部数据和计算资源交互的系统。这些系统通常被称为「智能体」。
每个人似乎对智能体的定义都有些不同。我的定义可能比大多数人更加技术化:
智能体是一个使用大语言模型(LLM)来决定应用程序控制流的系统。
即便如此,我承认我的定义并不完美。人们通常认为智能体是高级的、自主的、类似人类的——但如果是一个简单的系统,LLM 只是在两条不同路径之间进行路由选择呢?这符合我的技术定义,但与人们普遍对智能体应具备的能力认知不一致。要精确定义什么是智能体,确实非常困难!
因此,我非常喜欢 Andrew Ng 上周的推文。在推文中,他建议「与其争论什么应被归类为真正的智能体,不如承认系统具有不同程度的智能体特性(agentic)。」就像自动驾驶汽车有不同的自动化等级一样,我们也可以将智能体的能力视作一个光谱。我非常赞同这一观点,并且认为 Andrew 表达得非常到位。未来,当再有人问我什么是智能体时,我将转而讨论什么是「智能体特性」。
原文地址:https://x.com/AndrewYNg/status/1801295202788983136
1、什么是智能体特性?
去年我在一场关于 LLM 系统的 TED 演讲中使用了下面这张幻灯片,来讨论 LLM 应用中不同的自主性级别。
系统越依赖 LLM 来决定其行为方式,它就越具有「智能体特性」。
使用 LLM 将输入路由到特定的下游工作流中,表现出少许「智能体」行为。这会归类为上图中的 Router(路由器)类别。
如果你使用多个 LLM 执行多个路由步骤呢?这会介于 Router 和 State Machine(状态机)之间。
如果其中一个步骤是在决定是否继续或结束——实际上允许系统循环运行直到完成?那么这就会归类为 State Machine。
如果系统能够构建工具,记住它们,并在后续步骤中再次使用它们?这与 Voyager 论文所实现的功能类似,并且是非常具有智能体特性的,属于更高的 Autonomous Agent(自主智能体)类别。
论文地址:https://arxiv.org/abs/2305.16291
这些关于「智能体特性」的定义仍然相当技术化。我更倾向于这种技术性的定义,因为在设计和描述 LLM 系统时,这种定义非常实用。
2、「智能体特性」有什么用?
正如所有概念一样,我们有必要思考,为什么我们需要「智能体特性」这个概念?它有什么帮助?
了解系统的智能体特性能够指导你在开发过程中做出决策——包括构建、运行、与之交互、评估,甚至是监控。
系统的智能体特性越强,编排框架的作用就越大。如果你正在设计一个复杂的智能体系统,拥有一个具备这些概念的抽象框架能够加速开发。这个框架应该支持一流的分支逻辑和循环控制。
系统的智能体特性越强,运行难度就越大。它会变得更加复杂,有些任务可能需要很长时间才能完成。这意味着你可能需要将任务设为后台运行。同时,也需要具备持久执行能力,以应对任务过程中出现的错误。
系统的智能体特性越强,你就越希望在系统运行时进行交互。你会希望能够观察系统内部正在发生的事情,因为具体步骤可能无法提前预知。你还需要在某个时间点调整智能体的状态或指令,以便当它偏离既定轨道时纠正回来。
系统的智能体特性越强,你就越需要为此类应用构建一个评估框架。由于随机性会逐步累积,因此你可能需要多次进行评估。你不仅需要测试最终输出,还需要评估中间步骤,检查智能体的行为效率。
系统的智能体特性越强,你就越需要一种全新的监控框架。你希望能够深入分析智能体执行的每一个步骤,还希望可以根据智能体执行的步骤来查询运行情况。
理解并运用系统的智能体能力光谱,能提升开发过程的效率与稳健性。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
更多推荐
所有评论(0)